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Abstract-In computer simulations based on creeping motion equations, the difference in stress sensitivity of strain 
rate between Newtonian rheology and non-Newtonian power-law rheology does not greatly influence the types of 
mantled porphyroclast developed in simple shear viscous tlows. Porphyroclast type is determined by the radius of 
an initial spherical mantle. When a thin mantle lies within the separatrix, &-objects develop at small y, then complex 
porphyroclasts appear with increasing y. When the mantle is thicker and transected by the separatrix, +-objects 
form at small y and &-objects appear with increasing y during the same deformation. The transition from 4- to 6r- 
objects is gradual, the transition strain being dependent on the initial radius of the mantle. Our simulations did not 
produce f3-, 6i- or u-objects. Copyright 0 1996 Elsevier Science Ltd 

INTRODUCTION 

Porphyroclasts are potentially very useful for deforma- 
tion analysis in mylonites. Since Passchier & Simpson 
(1986) emphasised their usefulness, mantled porphyro- 
clasts have been confidently used as a shear sense 
indicator (Choukroune et al. 1987, Mawer 1987, Van 
Den Driessche & Brun 1987, Hooper & Hatcher 1988, 
Hanmer & Passchier 1991, Simpson & De Paor 1993). 
Recently, Passchier et al. (1993) and Passchier (1994) 
proposed a genetic model that shows how various 
mantled porphyroclasts develop in relation to patterns 
of flow perturbations around porphyroclasts. Passchier 
et al. (1993) divided b-type porphyroclasts into two sub- 
types: one without stair-stepping wings and one with 
stair-stepping wings. Here we denote the former as a 6i- 
object and the latter as a &object. They attributed the 
difference in the shape of the wings to the difference in 
flow perturbations, which can be ‘eye shaped’ or ‘bow-tie 
shaped’ separatrices (Passchier et al. 1993, p. 241, 
connections 3 and 4 in Table l), to the stress sensitivity 
of strain rate in the matrix during Newtonian or non- 
Newtonian flows (connections 1 and 2 in Table 1). 
Passchier (1994) subsequently proposed a more advanced 
model that explains how u-type, &type and e-type 
porphyroclasts develop. This new model is also based 
on the shape of the separatrix and the stress sensitivity of 
strain rate, and introduced a new factor, the geometrical 
relationship between initial mantle material and the 
separatrix (Table 1). 

These models are based on theoretical analyses of flow 
perturbations within Newtonian viscous material 
(Masuda & Ando 1988, Bjomerud 1989), and seem to 
be supported by experimental results on non-Newtonian 
viscous materials (Passchier & Sokoutis 1993) and rock 
analogues (ten Brink & Passchier 1995). However, in 
these experiments, deformation was produced in annular 
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shear zones where strain rate gradients are intrinsically 
present (Masuda et al. 1995). Thus, these experimental 
results may not be valid for straight and parallel-sided 
shear zones in nature. Masuda & Mizuno (1996) 
theoretically analysed non-Newtonian, power-law vis- 
cous flows around a rigid cylinder, and revealed that a 
‘double-bulge shaped’ separatrix occurs in both New- 
tonian and non-Newtonian viscous flows. This means 
that connections 1 and 2 in Table 1 may be suspect. In this 
paper we produce numerically various mantled porphyr- 
oclasts in Newtonian and non-Newtonian simple shear 
flows, aiming at testing the model by Passchier (1994). 
Unfortunately, our results do not agree with this model; 
we propose a new scheme (Table 2). 

NEWTONIAN MATRIX 

Boundary conditions for simulation 

We consider bulk simple shear flow of a viscous 
material containing a rigid spherical inclusion: the 
viscous material and rigid spherical body simulate the 
flowing matrix of rocks and an unstrained porphyroclast, 
respectively. We assume that the matrix material is 
incompressible and that the deformation is very slow 
and not time-dependent. We also assume no slip or 
detachment between the spherical body and the matrix, 
and no volume loss during deformation. 

Theoretical analysis 

Velocity vectors around the sphere have been pre- 
viously solved in different ways (Einstein 1956, Oertel 
1965, Wakiya 1956, Cox et al. 1968, Masuda & Ando 
1988, Bjomerud 1989, Gray & Busa 1994). Here we 
follow the solution proposed by Masuda & Ando (1988). 
They give the approximate velocity vector (u, v, w) at (x, 
y, z) of the Cartesian coordinates by polynomial 
functions, the shear plane being perpendicular to the z- 
axis and shear direction parallel to the x-axis. The radius 
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Table 1. Models for mantled porphyroclasts in terms of flow perturbations and stress-sensitivity of strain rate compiled after Passchier er al. (1993) 
and Passchier (1994). We here denote the h-object without stair-stepping wings as St-object and that with stair-stepping wings as &-object, 

respectively. The Passchier (1994) model consists of four genetic connections that are tied by numbered arrows. For explanation see text 

Relationship between mantle and separatrix 

Rheology Separatrix 
(1) mantle in 

separatrix 
(2) separatrix 

intersects mantle 
(3) separatrix 

in mantle 

Newtonian 
non-Newtonian 

‘eye’ 
‘bow-tie’ 

O-object 
O-object 

&-object 
&-object 

&object 
u-object 

of the central sphere is set as 1. We use their velocity 
vector where [xl ( 5 where the flow is strongly perturbed, 
while we assume the following velocity where 1x1 > 5: 

the sphere occurred during deformation (cf. Passchier & 
Simpson 1986, Bjornerud & Zhang 1995). 

u = pz + 0.5i/z(x2 + zq-3’2 

v=o 

w = -0.5+(x2 + 22)-3’2 

Results 

This velocity represents the sum of velocities influenced 
by a rotating sphere and those of the simple shear flow. 
The sphere rotates with an angular velocity of F/2 where 
i, is the shear strain rate (Jeffery 1922). 

Although the theory is three dimensional, we deal, for 
brevity, with the flow on a two-dimensional section 
perpendicular to the bulk shear plane and parallel to the 
shear direction of the far-field flow that cuts the centre of 
the rigid sphere (the X-Z plane). Since observations of 
natural mantled porphyroclasts are usually made on this 
plane, our analysis is reasonable. 

The movement of the mantle material is traced by 
Euler’s method (e.g. Mathews 1987) using data from the 
velocity vector field. Its shape gradually changes with 
progressing far-field simple shear (y) to develop wings, 
exhibiting more complex shapes at high strains. The 
length of the two wings are slightly different. This is an 
artifact of the numerical approximations inherent in the 
solution. Figures l-3 show how the mantled porphyr- 
oclasts develop for 5 different cases of initial radius of 
mantle (R). The simulation was restricted to y 514, and 
the sphere rotates 401” during this period. The types of 
simulated mantled porphyroclasts are tabulated in 
Table 2. 

Separatrix 
Thin mantle in the separatrix (R= 1.13 of Figs. 1 & 2) 

A Newtonian viscous matrix has a ‘double-bulge 
shaped’ separatrix when the bulk deformation is simple 
shear (Cox et al. 1968, Masuda & Mizuno 1996). The 
separatrix separates domains of open and closed particle 
paths: particles within the separatrix have ovoid orbits 
around the sphere, whereas those outside the separatrix 
flow away from the sphere. 

Since all of the mantle material is in the separatrix, no 
material crosses the separatrix into the domain of far field 
flow. The mantle exhibits clear wings by y = 4. The length 
of the wings becomes longest at around y = 8, where the 
ends of the wings are close to the centre line. These 

Following Cox et al. (1968), we introduce Pmin and 
pmax which are defined as the minimum and maximum 
distance of the particle on the path from the centre of the 
sphere. The open paths have a finite Pmin and infinite 
pmaX, whereas the closed paths have finite Pmin and pmax. 
The separatrix has a finite Pmin (1.14 < Pmin < 1.15) but 
infinite pmax (Cox et al. 1968, Masuda & Mizuno 1996). 
This scheme is different from Passchier et al. (1993) and 
Passchier (1994), their separatrix having finite Pmin and 

PInax* 

Model of mantledporphyroclast 

The mantle of the porphyroclasts is modeled by a 
material with the same rheological properties as the 
matrix. Thus, it behaves as a passive marker in the 
matrix during deformation. The mantle material was 
initially set circular. It was assumed, as previously 
mentioned, that no volume change of the mantle and 

R=1.13 R =l .15 R cl.4 

0 

Fig. 1. Porphyroclasts simulated by assuming Newtonian rheology of 
matrix around a sphere. Radius of the central sphere is 1. Shear sense is 
dextral. The mantle with R = 1.13 is in the separatrix, whereas those with 

R = 1.15 and 1.4 are transected by the separatrix. 
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R=1.13 R-1.15 

y=12 .' . . . . . ...+..... 

)+=14 . ..qcJ... . . . . . . . . ..J&.&.. 

Fig. 2. Selected examples showing development of ‘lagoons’. Shear 
sense is dextral. The mantle with R = 1.13 is in the separatrix, whereas 

that with R = 1.15 is transected by the separatrix. 

R -2.5 y=14 

Fig. 3. Selected examples of porphyroclasts with extremely long wings 
at larger strains. These are &objects. Shear sense is dextral. The 

symmetric axes of the objects are oblique to the shear plane. 

mantled porphyroclasts were assigned to the & class by 
their appearance. With increasing y, the wings become 
thinner and appear to be rolled up by the rotating sphere. 
Embayment of the matrix material becomes prominent 
by y = 6. It becomes much more prominent up to y = 10. 
At y = 14, the embayed matrix material appears to have 
accumulated to form ‘lagoons’ at opposite sides of the 
sphere on the centre line. Passchier (1994) predicted 8- 
objects in this situation (Table l), which have no wings. 
Our result does not support his model. 

Mantle transected by the separatrix (Figs. l-3) 

Mantle material outside the separatrix will move away 
from the sphere, whereas those within the separatrix 
never escape from this structure. Such a complex flow 
simultaneously produces wings of mantle material out- 
side the separatrix and causes embayment of the matrix 

material within the separatrix. When the initial radius of 
the mantle is small (R = 1.15 in Figs. 1 & 2), the $-object 
appears only at very low strains (e.g. y = 2), its symmetric 
axis being oblique to the centre line. An asymmetric 
appearance of the mantle becomes clear at y = 4, and a bz- 
object forms by y = 6. The transition from r#~- to &-objects 
is not sharp. Stair-stepping wings are obvious at this 
strain. The wings become thinner and longer at larger 
strains. The embayment of the matrix is prominent at 
7~8, and the embayed matrix forms ‘lagoons’ by y = 14 
(Fig. 2). 

As the initial radius of mantle increases (R = 1.4, 1.9 
and 2.5 of Figs. 1 & 3), the manner of mantle 
development changes gradually: the embayment of the 
matrix material occurs at higher strains and becomes less 
prominent while the wings becomes more prominent at 
lower strains for larger mantles. Embayment of matrix 
materials is ambiguous and no ‘lagoons’ are visible at 
y = 14 when the initial radius of the mantle is 1.9 and 2.5 
(Fig. 3). The transition from & to &-objects takes place 
at larger strains when R is larger. In these cases, the +- 
object survives up to strains of y = 12 and 14, respectively. 
Passchier et al. (1993) and Passchier (1994) predicted a 6i- 
object in this situation, but the simulation produced a & 
object and a +-object at earlier stages of strain. 

NON-NEWTONIAN VISCOUS MATRIX 

Power-law flow 

Power-law flow is usually represented by a relationship 
between the one-dimensional stress (2) and the strain rate 
component (i/) by 9 o( f, where n is the stress exponent. 
If n = 1, the material exhibits Newtonian viscosity. The 
magnitude of n has been determined to be 3-5 for some 
minerals and rocks through high temperature, high 
pressure deformation experiments (Nicolas & Poirier 
1976, Kirby & McCormick 1984, Poirier 1985, Tsenn & 
Carter 1987). 

Two dimensional analysis 

We used the velocity vectors obtained by Masuda & 
Mizuno (1996) for power-law simple shear flow up to 

Table 2. A new scheme for mantled porphyroclasts in terms of flow perturbations up to y = 14 and 10 for Newtonian and non-Newtonian matrix, 
respectively. A vertical arrow indicates an increase in simple shear strain. d-objects at low values of y are omitted in column (1) for both Newtonian 
and non-Newtonian flows, because they are transient. The difference between a Newtonian and non-Newtonian matrix has no influence on the type 

of resulting mantled porphyroclasts 

Relationship between mantle and separatrix 

Rheology Separatrix 
(1) mantle in 

separatrix 
(2) separatrix 

intersects mantle 

Newtonian 

non-Newtonian 

c) ‘double bulge’ ct &-object &object 
1 1 

complex &-object 

H ‘double bulge’ CI &-object #-object 
1 1 

complex &-object 
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n= 5. Since their analysis was essentially two dimen- 
sional, their rigid inclusion was a cylinder with an infinite 
length instead of a sphere in three dimensions. The other 
assumptions for calculation in their non-Newtonian 
analysis were the same as those taken for Newtonian 
analysis (very slow, time-independent flow; no slip move- 
ment between the rigid material and the matrix; no 
volume change during deformation). Notable results of 
Masuda & Mizuno (1996) were that (1) the angular 
velocity of the cylinder was equal to ,‘/2 irrespective of n, 
which is exactly the same as that obtained by Jeffery 
(1922) for a sphere embedded in a Newtonian viscous 
matrix, (2) a ‘double-bulge shaped’ separatrix occurs 
even in power-law flows around a rigid cylinder, its size 
being inversely proportional to n, and (3) patterns of 
velocity vectors, deflection of marker particles and 
distributions of dynamic and kinematic quantities (pres- 
sure, differential stress, strain rate, kinematic vorticity 
number etc.) are similar for different n as a first 
approximation. 

Results 

We analysed three cases of initial mantle radius 
(R = 1.05, 1.1 and 1.3) in the same way as the Newtonian 
flow up to y = 10, and the cylinder rotates 287” during this 
period. We present results for n = 5 in Fig. 4, the types of 
objects generated being tabulated in Table 2. Since 
1.05 < pmin c 1.06 for the separatrix at n = 5 (Masuda & 
Mizuno 1996), the mantle with R = 1.05 (Fig. 4, left) is in 
the separatrix. Those with R = 1.1 (centre) and 1.3 (right) 
are transected by the separatrix. The types of objects 
generated for n = 2,3 and 4 (not shown) are essentially the 

R =1.05 R =l .l R =1.3 

y=O 0 (3 

y=z 0 @.. . . . ../F.. 

~=8 -$,----& 0 

Fig. 4. Simulated porphyroclasts (1x1 < 2.6) around a cylinder within 
non-Newtonian power-law matrix of n = 5. Shear sense is dextral. The 
mantle with R = 1 .OS is in the separatrix, whereas those with R = 1.1 and 

1.3 are transected by the separatrix. 

same as those for n = 5. They are also the same as those 

produced in Newtonian flow (compare Fig. 4 with Figs. 1 
& 2 and see Table 2), although the precise geometry of 
mantles at each stage of strain is a little different from 
those produced during the Newtonian analyses at 
equivalent strains. 

DISCUSSION 

We could not produce CT, 8 and 6,-objects with this 
analysis, although they were listed in the original model 
(Table 1). Since these objects are commonly present in 
natural shear zones, our simulation is obviously incom- 
plete. Other factors, which we did not consider here, must 
influence the development of these objects. Passchier 
(1994) presented atypical, complex porphyroclasts and 
listed the main causes of deviation from typical porphyr- 
oclasts: (1) a shrinking porphyroclast adding material to 
the mantle, (2) a non spherical porphyroclast, (3) a non 
passive mantle, and (4) deviation from simple shear. 
Bjornerud & Zhang (1995) added a further factor (5) 
variation in coupling between the sphere and the mantle. 
These 5 factors should be critically examined to see if they 
are the main causes for the development of a-objects, 4- 
objects and &-objects. In any case, the genesis of mantled 
porphyroclasts is undoubtedly more complicated than 
suggested by Passchier et al. (1993) and Passchier (1994). 
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